

    
      
          
            
  
Fun: Functional Programming in PHP


Contents:


	Tutorials

	How-to Guides

	Fun API Reference
	Operators

	Strings

	Arrays

	Maps

	Sets





	API Design
	Design Principles

	Use Cases









Fun makes it easier to write functional code in PHP.



Getting Started


	TODO: Insert getting started instructions here





Installation


	TODO: Insert installation instructions here







Indices and tables


	Index


	Module Index


	Search Page







          

      

      

    

  

    
      
          
            
  
Tutorials




          

      

      

    

  

    
      
          
            
  
How-to Guides




          

      

      

    

  

    
      
          
            
  
Fun API Reference


Packages:


	Operators

	Strings

	Arrays

	Maps

	Sets








          

      

      

    

  

    
      
          
            
  
Operators

Operators are what you would expect in the mathematical sense e.g addition, subtraction, equality.

Fun provides a large number of operators as PHP functions and callable constants. These are designed to:


	Accept primitive PHP types


	Be used as first-class functions





When to use Fun operators

In simple cases, e.g when comparing two values known to be primitive, you should use PHP’s built in operators. But, for comparing your own types or Fun types, use these operators.



Using operators

To use them as functions, import as functions:

use function Fun\eq;





And to use them as first-class values, import as constants:

use const Fun\eq;






Note

This is because PHP has separate symbol tables for functions and constants. This may change in a near-future version of PHP.





Equivalence


eq

eq :: Eq a -> Eq a -> Boolean





For PHP primitives, the eq operator is equivalent to === such that the following holds:

eq(1, 1) && 1 === 1





Unlike ===, eq compares equivalence of objects that implement the type Fun\Types\Eq.

eq expects implementations to hold the properties of equivalence relations, namely:


	Reflexivity i.e eq($x, $x) === true


	Symmetry i.e eq($x, $y) === eq($y, $x)


	Transitivity i.e !(eq($x, $y) && eq($y, $z)) || eq($x, $z)




Implementations that do not have these properties are errorneous.



neq

neq :: Eq a -> Eq a -> Boolean





neq is defined as the complement of neq. It is implemented in kind. Any type that implements Fun\Types\eq gains a working neq operator.

It is equivalent to PHP’s !== operator.




Ordering


	lt


	lte


	gt


	gte


	min


	max


	compare






Booleans


	_and


	_or


	_not


	_if


	when


	unless


	complement






Sets


	subset


	proper_subset


	union


	intersect


	diff


	symmetric_diff






Numerical


	add


	sub


	negate


	sum


	product


	mul


	div


	power








          

      

      

    

  

    
      
          
            
  
Strings




          

      

      

    

  

    
      
          
            
  
Arrays




          

      

      

    

  

    
      
          
            
  
Maps




          

      

      

    

  

    
      
          
            
  
Sets




          

      

      

    

  

    
      
          
            
  
API Design

This document describes the design principles and use cases for this library.


Design Principles


	Self-documenting


	Ease of use


	Stability


	Fail-fast


	Example driven


	Clear naming


	Consistency


	Immutability


	Type-safety





Self-documenting

It should be immediately obvious what an interface does just from looking at:


	The name


	Usage






Ease of use

Prioritise ease of use. Favour decisions that maintain or improve how easy an
interface is to use.



Stability

Backwards incompatible changes cost the user time. And probably someone’s money.
Favour backwards compatability.

If we must break BC, do so in a way in which migration can be automated.

In addition, support major versions to allow for said migration.



Fail-fast

PHP is a dynamic language. To fail fast, we must:


	Support static analysis tools


	Fail-fast at run-time




This assumes extensive run-time checks of pre-conditions, post-conditions and
invariats.



Example driven

We must first produce examples of use cases for an interface before implementing
that interface. Those examples then become core to our documentation and drive
the implementation.



Clear naming

Naming is crucial. Naming interfaces expands the implementation language. Adhere
to consistent naming conventions - treat naming interfaces as the expansion of a
language.

Use linguistics to assess and verify naming conventions.



Consistency

PHP evolved organically. And the standard library API shows for it. Fun’s raison
d’etre is to smooth these inconsistencies.

Consistency forms patterns. The human mind loves patterns. Solid, enforced
consistency allows users to predict usage without looking up documentation.



Immutability

Mutability is inherently error-prone and difficult to reason about. A utility
belt library should have little need for mutability.



Type-safety

Use static type checkers to:


	Ensure internal type safety


	Correct integration with end-user type checking tools







Use Cases

PHP is a web language. It’s commonly used as part of the LAMP stack.

As such, PHP is typically used to:


	Implement HTTP interfaces, either server-rendered or REST


	Reading and writing to a database e.g implementing CRUD


	Render data to some form of document, e.g HTML, JSON, XML, YAML


	Transform received data for reading from and writing to a database


	Validating and sanitising received input for safe use


	Transform fetched data queried from a database for output


	Validating and sanitising datbase data for safe output


	Consuming external 3rd party APIs using SDKs and clients


	Transforming values from internal representation to ones accepted by 3rd
party APIs for querying or writing.


	Transforming received values from 3rd party APIs to internal
representations.


	Validating and sanitising values read from 3rd party APIs


	Writing tests that interact with DB


	Writing tests that stub and fake 3rd party services


	Writing tests that verify data structures




We can reduce these use cases to:


	Database interaction


	HTTP


	API Consumption


	Template rendering


	Serialization


	Validation


	Sanitisation


	Data transformation


	Configuration





Database interaction

For DB interaction, an ORM or DBA layer is typically used. Eloquent, Laravel’s
ORM, uses the ‘active record pattern’. On the other hand, Doctrine uses the data
mapper pattern.



HTTP

For defining HTTP interfaces, some form of framework is typically used, allowing
the user to define routes and controllers, which respond to consumer requests.

These may be REST routes or implemented to look like static pages.



API Consumption

When interacting with 3rd party APIs, the user typically uses an available SDK
or uses a HTTP client.

3rd party SDKs typically accept data in the form of maps. In addition, they
return data in maps. Even if objects are used, it is common to support access a
la hash map.

Entry-points:


	In response to user input


	In response to a webhook


	In response to a scheduled task




Examples:


	Leadflo REST API endpoint for actions due


	Leadflo REST API endpoint for saving a patient


	Leadflo REST API endpoint for listening on tx type changes


	IAS Stripe integration on subscription


	IAS Stripe integration on payment failure


	IAS Stripe integration on payment success






Template rendering

For server-rendered apps, a templating engine is typically used, as opposed (but
not always) to interpolating PHP using tags in HTML documents. Input is
typically provided by forms. Output typically interpolates data into a HTML
template - using lists and iteration for rendering multiple records.



Serialization

For REST API implementation, JSON is typically used but may support XML. YAML is
rarely used to implement REST APIs. Responses are typically restricted to the
supported JSON data types - the complex ones being arrays and maps/objects.

In short, REST APIs serialize application data as output. But serialization is
not limited to the implementation of REST APIs.



Validation

Validation is often supported by the framework. Frameworks typically provide a
means to implement new validation rules. This often leads to string
manipulations and regular expression matching and testing.



Sanitisation

Sanitation is often supported by and provided by frameworks. Frameworks
typically provide means to implement new sanitisation rules. This involves
string manipulation and regular expression matching/replacement.



Data transformation

Transforming values from one format to another typically involve iteration over
lists of maps and the transformation of one map into another map. This may also
include from one object, such as a domain model object, to a data transfer
object or an entity object from a 3rd party SDK.



Configuration

YAML is commonly used for configuration. Symfony uses YAML. But then
Symfony allows the ultimate in flexibility and thus supports multiple
configuration languages.






          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Fun: Functional Programming in PHP
        


        		
          Tutorials
        


        		
          How-to Guides
        


        		
          Fun API Reference
          
            		
              Operators
              
                		
                  When to use Fun operators
                


                		
                  Using operators
                


                		
                  Equivalence
                


                		
                  Ordering
                


                		
                  Booleans
                


                		
                  Sets
                


                		
                  Numerical
                


              


            


            		
              Strings
            


            		
              Arrays
            


            		
              Maps
            


            		
              Sets
            


          


        


        		
          API Design
          
            		
              Design Principles
              
                		
                  Self-documenting
                


                		
                  Ease of use
                


                		
                  Stability
                


                		
                  Fail-fast
                


                		
                  Example driven
                


                		
                  Clear naming
                


                		
                  Consistency
                


                		
                  Immutability
                


                		
                  Type-safety
                


              


            


            		
              Use Cases
              
                		
                  Database interaction
                


                		
                  HTTP
                


                		
                  API Consumption
                


                		
                  Template rendering
                


                		
                  Serialization
                


                		
                  Validation
                


                		
                  Sanitisation
                


                		
                  Data transformation
                


                		
                  Configuration
                


              


            


          


        


      


    
  

_static/file.png





_static/minus.png





_static/plus.png





